Skip to main content

2. Definition of AI - What is artificial intelligence?

"Understanding Artificial Intelligence: From its Definition to Current Challenges and Ethical Concerns"


Did you know that the idea of AI started way back in 1955? We'll uncover the story behind its birth when the term "artificial intelligence" was first coined by John McCarthy. We'll journey through the years, discovering how AI faced challenges and setbacks but emerged stronger than ever. We'll learn from the past and dream about the future of AI, where smart machines may become an even bigger part of our lives.

Artificial Intelligence, commonly abbreviated as AI, refers to the ability of machines to mimic human-like intelligence and perform tasks that typically require human intelligence, such as reasoning, learning, decision-making, perception, and language understanding. AI is an interdisciplinary field that encompasses various branches of computer science, including machine learning, natural language processing, robotics, computer vision, and cognitive computing. 


"AI refers to machines mimicking human intelligence, an interdisciplinary field of computer science."



The definition of AI has evolved over time, reflecting advances in technology and changes in societal expectations. The term "artificial intelligence" was first coined in 1955 by John McCarthy, in the proposal for the Dartmouth workshop, who defined it as "the science and engineering of making intelligent machines." However, the early years of AI research were characterized by overly ambitious goals and unrealistic expectations, leading to what is now known as the "AI winter" of the 1970s and 1980s. 



discovering how AI faced challenges and setbacks but emerged stronger than ever




*****

John McCarthy (September 4, 1927 - October 24, 2011) was an American computer scientist and cognitive scientist who is known for his significant contributions to the field of artificial intelligence (AI). 

McCarthy was born in Boston, Massachusetts. He attended Caltech where he received his bachelor's degree in mathematics in 1948, and later earned a PhD in mathematics from Princeton University in 1951. After completing his studies, he worked as a research mathematician at Princeton and later at Stanford University. 


"John McCarthy coined AI, organized the Dartmouth workshop, developed Lisp, and won the Turing Award."


In the late 1950s, McCarthy became interested in the concept of "thinking machines" and began to develop the idea of artificial intelligence. He is credited with coining the term "artificial intelligence" in 1955, and in 1956 he organized the Dartmouth workshop (The Dartmouth Summer Research Project on Artificial Intelligence), which is considered to be the birth of AI as a field of study. 

Throughout his career, McCarthy made many significant contributions to AI, including the development of the Lisp programming language, which is still used today in AI research and development. He also developed the concept of "garbage collection" for managing computer memory, which is widely used in modern programming languages. 

In addition to his work in AI, McCarthy was also involved in cognitive psychology and the study of consciousness. He developed the idea of "cognitive robotics," which involves using AI to model the workings of the human mind. McCarthy was widely recognized for his contributions to computer science and AI. He received numerous awards throughout his career, including the Turing Award in 1971, which is considered to be the highest honor in computer science. 

*****

In the past decade, AI has experienced a resurgence of interest and investment, driven by breakthroughs in machine learning and deep learning, and the availability of vast amounts of data and computing power. Today, AI is used in a wide range of applications, from self-driving cars and voice assistants to medical diagnosis and drug discovery. 

One way to classify AI is based on its level of autonomy. At the lowest level, we have rule-based systems, which rely on explicit sets of rules to make decisions. For example, a thermostat that turns on the heating when the temperature drops below a certain threshold is a rule-based system. At the next level, we have machine learning systems, which learn from data to make predictions or decisions. Machine learning can be further divided into supervised learning, unsupervised learning, and reinforcement learning. Finally, we have autonomous systems, which can make decisions and take actions without human intervention. Autonomous systems include self-driving cars, drones, and robots. 


"AI has become more popular in recent years, but there are still challenges and ethical concerns."


Another way to classify AI is based on its cognitive capabilities. At the lowest level, we have reactive machines, which can only react to the current situation and do not have memory or the ability to learn. For example, a chess-playing computer that only responds to the opponent's move is a reactive machine. At the next level, we have limited memory systems, which can use past experience to inform current decisions. Limited memory systems include most machine learning algorithms. At the highest level, we have self-aware systems, which have consciousness, emotions, and a sense of self. Self-aware systems are still purely theoretical and remain the subject of much debate and speculation. 

Despite the recent progress in AI, there are still many challenges and limitations. AI systems can be biased, opaque, and unpredictable, leading to ethical concerns and potential harms. The lack of interpretability and explainability in some AI systems can also hinder their adoption and trustworthiness. The development of AI should be guided by ethical principles and a commitment to human well-being, with an emphasis on transparency, fairness, and accountability. 

In conclusion, the definition of artificial intelligence is complex and multifaceted, reflecting the diversity of approaches, techniques, and applications in the field. AI has the potential to transform many aspects of society, but its development should be accompanied by careful consideration of its ethical and societal implications.









#STARPOPO #Top AI Book #Who named Artificial Intelligence?



Popular posts from this blog

Preface - The Adventures of AI: A Tale of Wonder and Learning

"A beginner's guide to AI covering types, history, current state, ethics, and social impact" Table of Contents Step into the exciting world of Artificial Intelligence (AI) with this captivating beginner's guide. From smart robots to clever computers, AI is changing the way we live, work, and play. Join us on a thrilling journey as we discover the wonders and possibilities of this incredible technology. In this book, we'll explore the different types of AI, like super-smart machines that can react, remember, understand others, and even be aware of themselves. We'll unravel the mysteries of machine learning, where computers learn to be smarter on their own. We'll also discover how AI helps us talk to computers using language and how robots are becoming our trusty companions. This enchanting book dives into the exciting history of AI, from its humble beginnings to its remarkable present. We'll learn about the incredible things AI can do today and imagine ...

규칙성 찾기

인지능력은 인류가 식량을 구하거나 위험을 회피하는 등 생존을 위한 경험을 반복하면서 발달했다. 이후 서로 소통하고 정보를 공유하며 축적된 집단 지성을 활용하는 방향으로 감각지각 sensory perception 능력이 진화했다. 별보기나 수렵 채집과 같은 행동은 인지 능력과 문화 활동 발달에 영향을 미쳤다. 특히 별자리 관찰은 길을 찾고 시간을 관리하는 데 도움이 되었으며, 인류는 자연 속에서 패턴을 인식하고—무질서해 보이는 현상을 보고 규칙을 찾는다— 미래의 모습을 예측할 수 있게 되었다. 별자리 관찰을 통한 패턴 인식 노력은 인간 두뇌의 추상적 사고 능력을 발달시켜 수학과 철학 같은 더 복잡한 형태의 사고로 이어지는 데 중요한 역할을 했다. 초기 인류 사회는 구전 전통에 의존하여 다음 세대에게 지식을 전달했지만 기억의 한계를 극복하기 위해 보다 신뢰할 수 있는 도구를 이용하기 시작했다. 지식 전달 도구는 쐐기문자, 상형문자와 같은 기호에서 시작하여 구전보다 더 상세한 정보를 기록하고 오랫동안 보전할 수 있는 문자 체계로 발전하게 되었다. 문자로 지식, 법률, 역사, 이야기를 기록함으로써 개개인의 기억에 의존하기보다 집단 기억을 강화하고 문화를 더욱 체계적으로 보전할 수 있게 되었다. 복잡한 언어 체계가 생기기 전에는 예술이 의사소통과 표현의 한 형태였다. 동굴 벽화는 사냥, 종교에 대한 정보나 신념을 공유한 좋은 사례이다. 벽화와 같은 초기 형태의 시각적 소통방식은 기호를 이용한 구체적인 정보 전달방식으로 변화했고 문자와 발음기호인 자모로 발전하여, 더욱 추상화된 사고와 의사소통이 가능해졌다.  불완전한 기억으로 인해 상상력이 발현되기도 했다. 정보나 이야기를 전파할 때마다 해석이 가미되고, 예측되는 행동의 당위성이나 도덕적 교훈을 가르치거나, 이야기를 더욱 매력적으로 만들어 사회적 결속력과 공감을 강화할 수 있었다. 이렇게 형성된 문화는 자연스럽게 공동체 구성원들에게 무엇을 기억하고 잊을지 규정하는 기능으로 작용했다.  감각 기관으로부터 ...

윤리탄생

규칙성 찾기에서 윤리의식이 생겨났다. 인류는 공동체 삶 속에서 서로의 행동에 따른 결과를 관찰하고, 그 영향을 학습해 왔다. 패턴인식 과정에서 행위의 타당성이 검증되었고, 타당성은 공동체 구성원에게 허용되는 행동, 바람직한 행동, 유해한 행동 등에 대한 판단의 기준이 되었다. 패턴인식을 통해 타당성을 판단할 수 있게 되고 경험이 축적되자 인류는 공동체 구성원의 행동을 직관적으로 식별하고 모방함으로써 윤리의식을 형성하고 내면화해 왔다. 우리의 뇌는 패턴인식에 적합하게 진화했으며, 점차 학습된 규칙성을 토대로 앞으로 일어날 일을 예측할 수 있게 되었다. 우리는 패턴인식과 예측 과정 속에서 언어를 배우고 서로를 이해하며, 심지어 미래 날씨를 예측한다. 그러나 예측이 언제나 맞는 것은 아니어서 예측을 정확하게 하기 위해서는 인과관계에 대한 반복된 학습이 필요하다.  패턴인식은 어떤 현상의 규칙성, 구조 또는 추세를 찾아내는 인지과정이다. 인간은 본능적으로 패턴인식에 뛰어나며, 이를 통해 복잡한 세상을 이해할 수 있다. 패턴인식 과정을 통해 인류는 분석적 사고가 가능해 졌고, 현상들의 세세한 내용을 분류, 특이점을 찾고, 데이터에 기반한 의사 결정을 내릴 수 있게 되었다.  다른 한편으로 예측은 인식된 패턴을 기반으로 한다. 예를 들어, 날씨의 경우 대기 데이터의 패턴을 인식하여 미래 상황을 예측한다. 규칙성을 더 잘 찾고 패턴을 더 잘 해석할수록 예측의 신뢰도가 높아진다. 이러한 사례는 수렵활동과 농사계획에 이르기까지 쉽게 찾아볼 수 있다. 어떤 결정을 내려야 할때 우리는 환경의 가변성, 잠재적 이상 징후, 과거 경험, 앞뒤 맥락 등 다양한 요소를 고려하여 예측의 타당성을 평가하고 지속적으로 검증한다. 이렇게 규칙성 찾기 노력을 통해 윤리의식이 형성되었다. 그리고 공유된 공동체의 문화적 규범과 가치는 패턴인식과 예측에서 발현된 윤리의식에 다시 영향을 미친다. 그러나 예측이 미래를 결정하는 것은 아니다. 패턴에 대한 우리의 이해도가 향상되고 있긴 하지만...